Muscarinic Modulation of High Frequency Oscillations in Pedunculopontine Neurons
نویسندگان
چکیده
We previously reported that persistent application of the non-specific cholinergic agonist carbachol (CAR) increased the frequency of calcium channel-mediated oscillatory activity in pedunculopontine nucleus (PPN) neurons, which we identified as dependent on voltage-gated, high-threshold P/Q-type channels. Here, we tested the hypothesis that M2 muscarinic receptors and G-proteins associated with M2 receptors mediate the increase in oscillatory frequency in PPN neurons. We found, using depolarizing ramps, that patch clamped 9-12 day old rat PPN neurons (n = 189) reached their peak oscillatory activity around -20 mV membrane potential. Acute (short duration) application of CAR blocked the oscillatory activity through M2 muscarinic receptors, an effect blocked by atropine. However, persistent (long duration) application of CAR significantly increased the frequency of oscillatory activity in PPN neurons through M2 receptors [40 ± 1 Hz (with CAR) vs. 23 ± 1 Hz (without CAR); p < 0.001]. We then tested the effects of the G-protein antagonist guanosine 5'-[β-thio] diphosphate trilithium salt (GDP-β-S), and the G-protein agonist 5'-[γ-thio] triphosphate trilithium salt (GTP-γ-S). We found, using a three-step protocol in voltage-clamp mode, that the increase in the frequency of oscillations induced by M2 cholinergic receptors was linked to a voltage-dependent G-protein mechanism. In summary, these results suggest that persistent cholinergic input creates a permissive activation state in the PPN that allows high frequency P/Q-type calcium channel-mediated gamma oscillations to occur.
منابع مشابه
Cholinergic modulation of fast inhibitory and excitatory transmission to pedunculopontine thalamic projecting neurons.
The pedunculopontine nucleus (PPN) is part of the cholinergic arm of the reticular activating system, which is mostly active during waking and rapid-eye movement sleep. The PPN projects to the thalamus and receives cholinergic inputs from the laterodorsal tegmental nucleus and contralateral PPN. We employed retrograde labeling and whole cell recordings to determine the modulation of GABAergic, ...
متن کاملCholinergic Modulation of Fast Inhibitory and Excitatory Transmission to 1 Pedunculopontine Thalamic Projecting Neurons
21 The pedunculopontine nucleus (PPN) is part of the cholinergic arm of the reticular 22 activating system, which is mostly active during waking and REM sleep. The PPN 23 projects to the thalamus, and receives cholinergic inputs from the laterodorsal tegmental 24 nucleus and contralateral PPN. We employed retrograde labeling and whole-cell 25 recordings to determine the modulation of GABAergic,...
متن کاملCholinergic and endocannabinoid neuromodulatory effects overlap on neurons of the pedunculopontine nucleus of mice.
The pedunculopontine nucleus (PPN) is a part of the reticular activating system and one of the main sources of the cholinergic fibers in the midbrain, while it is also subject to cholinergic modulation. This nucleus is known to be a structure that controls sleep-wake cycles, arousal, and locomotion. Neurons of the PPN are targets of several neuromodulatory mechanisms, which elicit heterogeneous...
متن کاملAcetylcholine modulates gamma frequency oscillations in the hippocampus by activation of muscarinic M1 receptors
Modulation of gamma oscillations is important for the processing of information and the disruption of gamma oscillations is a prominent feature of schizophrenia and Alzheimer's disease. Gamma oscillations are generated by the interaction of excitatory and inhibitory neurons where their precise frequency and amplitude are controlled by the balance of excitation and inhibition. Acetylcholine enha...
متن کاملThe pedunculopontine tegmental nucleus: a second cholinergic source for frequency-specific auditory plasticity.
Cholinergic modulation is essential for many brain functions and is an indispensable component of the prevalent models attempting to understand the neural mechanism responsible for learning-induced auditory plasticity. Unlike the cholinergic basal forebrain, the cholinergic pedunculopontine tegmental nucleus (PPTg) has received little attention. This study was designed to confirm whether the PP...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2013